AQA Physics A AS Level © Nelson Thornes Ltd 2008

Chapter 3

Answers to examination-style questions

<table>
<thead>
<tr>
<th>Answers</th>
<th>Marks</th>
<th>Examiner’s tips</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (a) the minimum energy required to remove an electron from the surface of a metal</td>
<td>1</td>
<td>‘State what is meant by’ can usually be answered by giving a definition.</td>
</tr>
<tr>
<td>1 (b) (i) Graph features: See EA 3.1.1 below</td>
<td>4</td>
<td>These are standard expectations in graph questions. Make sure that you label the axes properly with quantities and units and that you mark the points correctly. A scale will be acceptable if your graph fills more than half of the area of the graph paper.</td>
</tr>
<tr>
<td>• correct axis labels and units</td>
<td></td>
<td>Because the line is of the same form as a general straight line, direct comparison with (y = mx + c) will satisfy what this part requires.</td>
</tr>
<tr>
<td>• suitable scales</td>
<td></td>
<td>1 By comparison with (m) above.</td>
</tr>
<tr>
<td>• at least 5 points plotted correctly</td>
<td></td>
<td>1 Show fully how you have worked out the gradient. It may help to include the units.</td>
</tr>
<tr>
<td>• best fit line</td>
<td></td>
<td>1 The correct unit is an essential part of this answer.</td>
</tr>
<tr>
<td>1 (ii) the graph is a straight line which does not pass through the origin (E_K = hf - \phi) is an equation of the same form as that of the general straight line, (y = mx + c) (m = h), and (c = -\phi)</td>
<td>1</td>
<td>1 (f_0) is the threshold frequency for photoemission to occur.</td>
</tr>
<tr>
<td>(E_K = \frac{3.7 \times 10^{-19}}{(10 - 4.3) \times 10^{14}} \text{ (J)})</td>
<td>1</td>
<td>Just read off the graph!</td>
</tr>
<tr>
<td>(= 6.5 \times 10^{-34} \text{ J s})</td>
<td>1</td>
<td>This solution uses the value of (h) found earlier, but you could get away with using the value from the Data Booklet ((6.63 \times 10^{-34} \text{ J s})).</td>
</tr>
<tr>
<td>at the intercept (f_0) on the (f)-axis (E_K = 0), so work function (\phi = h f_0)</td>
<td>1</td>
<td>This is the ‘experimental method’ of verifying a scientific theory.</td>
</tr>
<tr>
<td>intercept value, (f_0 = 4.3 \times 10^{14} \text{ Hz}) and (\phi = 6.5 \times 10^{-34} \times 4.3 \times 10^{14})</td>
<td></td>
<td>Some theories (such as parts of Einstein’s work on gravity) are still impossible to verify experimentally.</td>
</tr>
<tr>
<td>(= 2.8 \times 10^{-19} \text{ J})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 (c) if the test does not provide supporting evidence, the prediction is incorrect so the theory is incorrect and must be changed</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

\[E_{\text{km}}/10^{-19} \text{ J} \]

\[\text{frequency } f/10^{14}\text{ Hz} \]
Answers to examination-style questions

<table>
<thead>
<tr>
<th>Answers</th>
<th>Marks</th>
<th>Examiner’s tips</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 (a) Name: work function</td>
<td>1</td>
<td>This is a characteristic of each metal surface. Remember to include ‘minimum’ and ‘surface’ in the definition.</td>
</tr>
</tbody>
</table>

Definition: the minimum energy required to remove an electron from the surface of a metal

Relevant points include:
- incident photon has fixed energy
- photon loses all its energy in a single interaction
- electron can lose various amounts of energy in reaching surface of metal
- electrons have a maximum kinetic energy

<table>
<thead>
<tr>
<th>(b)</th>
<th>Relevant points include:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- incident photon has fixed energy</td>
<td></td>
</tr>
<tr>
<td>- photon loses all its energy in a single interaction</td>
<td></td>
</tr>
<tr>
<td>- electron can lose various amounts of energy in reaching surface of metal</td>
<td></td>
</tr>
<tr>
<td>- electrons have a maximum kinetic energy</td>
<td></td>
</tr>
</tbody>
</table>

\[(\text{photon energy}) - (\text{work function}) \]

3 Incident photons all have the same energy because the light is monochromatic. An incident photon then transfers all its energy to an electron in the metal. An electron below the surface will have to do work, losing energy, in order to reach the surface. On leaving the surface the electron loses a further quantity of energy, the work function. So the maximum energy a photoelectron can have is that given to it by the photon, less the work function. Electrons coming from deeper inside the metal will be emitted with less energy than those originally at the surface.

| (c) (i) \[\phi = hf - E_K \] |
|-----|-------------------|
| \[= (6.63 \times 10^{-34} \times 1.8 \times 10^{18}) - 4.2 \times 10^{-19} \] |
| \[= 7.73 \times 10^{-19} \text{ J} \] |

1 The starting equation could be rearranged from Data Booklet if you can’t remember it. Keep 3 significant figures in the working because you need the energy value from (i) when working out the answer to (ii).

1 Incident photons all have the same energy because the light is monochromatic. An incident photon then transfers all its energy to an electron in the metal. An electron below the surface will have to do work, losing energy, in order to reach the surface. On leaving the surface the electron loses a further quantity of energy, the work function. So the maximum energy a photoelectron can have is that given to it by the photon, less the work function. Electrons coming from deeper inside the metal will be emitted with less energy than those originally at the surface.

| (ii) \[f_0 = \frac{7.73 \times 10^{-19}}{6.63 \times 10^{-34}} \] |
|-----|-------------------|
| \[= 1.2 \times 10^{15} \text{ Hz} \] |

1 The maximum wavelength corresponds to the minimum frequency for emission, which can be read directly off the graph. Use of \(c = f \lambda \) then leads to the answer.

1 If you compare \(E_K = hf - \phi \) with the straight line equation \(y = mx + c \), it should be clear that \(h \) is the gradient \((m)\). \(h \) is a constant, so the gradient is unchanged. When \(E_K = 0 \), we are at the threshold frequency, where \(hf = \phi \). When the work function \(\phi \) is doubled, so is the threshold frequency.

3 (a) minimum frequency for emission

\[= 4.0 \times 10^{14} \text{ Hz (from intercept on f-axis)} \]

1 The maximum wavelength corresponds to the minimum frequency for emission, which can be read directly off the graph. Use of \(c = f \lambda \) then leads to the answer.

1 If you compare \(E_K = hf - \phi \) with the straight line equation \(y = mx + c \), it should be clear that \(h \) is the gradient \((m)\). \(h \) is a constant, so the gradient is unchanged. When \(E_K = 0 \), we are at the threshold frequency, where \(hf = \phi \). When the work function \(\phi \) is doubled, so is the threshold frequency.

\[\lambda = \frac{c}{f} = \frac{3.00 \times 10^8}{4.0 \times 10^{14}} \]

1 The maximum wavelength corresponds to the minimum frequency for emission, which can be read directly off the graph. Use of \(c = f \lambda \) then leads to the answer.

1 If you compare \(E_K = hf - \phi \) with the straight line equation \(y = mx + c \), it should be clear that \(h \) is the gradient \((m)\). \(h \) is a constant, so the gradient is unchanged. When \(E_K = 0 \), we are at the threshold frequency, where \(hf = \phi \). When the work function \(\phi \) is doubled, so is the threshold frequency.

\[= 7.5 \times 10^7 \text{ m} \]

1 The maximum wavelength corresponds to the minimum frequency for emission, which can be read directly off the graph. Use of \(c = f \lambda \) then leads to the answer.

1 If you compare \(E_K = hf - \phi \) with the straight line equation \(y = mx + c \), it should be clear that \(h \) is the gradient \((m)\). \(h \) is a constant, so the gradient is unchanged. When \(E_K = 0 \), we are at the threshold frequency, where \(hf = \phi \). When the work function \(\phi \) is doubled, so is the threshold frequency.

1 The maximum wavelength corresponds to the minimum frequency for emission, which can be read directly off the graph. Use of \(c = f \lambda \) then leads to the answer.

1 If you compare \(E_K = hf - \phi \) with the straight line equation \(y = mx + c \), it should be clear that \(h \) is the gradient \((m)\). \(h \) is a constant, so the gradient is unchanged. When \(E_K = 0 \), we are at the threshold frequency, where \(hf = \phi \). When the work function \(\phi \) is doubled, so is the threshold frequency.
4 (a) there must be sufficient distance between collisions for the electrons to gain enough energy for the required excitations to occur or the vapour must not completely absorb the electrons

(b) Relevant points include:
• the mercury vapour emits ultraviolet radiation
• the ultraviolet radiation excites the atoms of the coating
• the coating then emits electromagnetic radiation of longer wavelengths (or lower frequencies)
• some of which is in the visible region

5 (a) frequency
\[f = \frac{E_1 - E_2}{h} \]
\[= \frac{-0.26 \times 10^{-18} - (-0.59 \times 10^{-18})}{6.63 \times 10^{-34}} \]
\[= 5.0 \times 10^{14} \text{ Hz} \]

(b) from \(n = 3 \) to \(n = 2 \)

6 (a) electrons behave both as waves and as particles
Wave behaviour: they can be diffracted, or show interference effects
Particle behaviour: can be deflected in electric or magnetic fields, or make collisions with atoms

(b) (i) From \(\lambda = \frac{h}{m v} \), speed \(v = \frac{h}{m \lambda} \)
\[= \frac{6.63 \times 10^{-34}}{9.11 \times 10^{-31} \times 1.3 \times 10^{-16}} \]
\[= 5.6 \times 10^6 \text{ m s}^{-1} \]
AQA Physics A AS Level © Nelson Thornes Ltd 2008

Chapter 3

Answers to examination-style questions

Answers	Marks	Examiner’s tips

(ii) \(m = \frac{h}{\lambda v} = \frac{6.63 \times 10^{-34}}{8.6 \times 10^{-14} \times 5.6 \times 10^6} \)
= \(1.4 \times 10^{-27} \) kg

A further rearrangement of the de Broglie equation gives this result.

7 (a) electron diffraction (or interference)

(b) \(\lambda = \frac{h}{mv} = \frac{6.63 \times 10^{-34}}{9.11 \times 10^{-31} \times 5.00 \times 10^5} \)
= \(1.46 \times 10^{-9} \) m

Until electron diffraction had been discovered, diffraction and interference were only associated with waves.

(c) mass of muon = \(207 \times 9.11 \times 10^{-31} \)
= \(1.89 \times 10^{-28} \) kg

It is preferable to keep all 3 significant figures in this answer, as you may need the value in (c).

(d) Relevant points include:
- both experience the same increase in energy (or have same work done on them)
- wavelength is inversely proportional to momentum
- gain in momentum is different for the muons and electrons
- the smaller mass has the largest acceleration (or gain in speed)

An alternative approach:
Since \(\lambda \) is the same, the muons must have the same momentum as the electrons:
\[
m_e v_e = m_\mu v_\mu
\]
So \(v_\mu = \frac{m_e v_e}{m_\mu} = \frac{5.00 \times 10^5}{207} \)
= \(2.4 \times 10^3 \) m s\(^{-1}\)

A more mathematical approach:
Each will gain the same kinetic energy, so let \(mv^2 = constant \ (k) \).

Now \(v = \sqrt{\frac{k}{m}} \), leading to \(\lambda = \frac{h}{mv} = \frac{h}{m} \sqrt{\frac{m}{k}} \),
and as both \(h \) and \(k \) are constants, \(\lambda \) is proportional to \(m^{-1} \).

Thus a particle with larger mass must have a smaller de Broglie wavelength.
(Actually \(\lambda \) is \(1.0 \times 10^{-10} \) m for the muons in this example.)