Category Archive: Miscellaneous

Jan 18 2015

2015 Animated Science News

Dear Users,

It has been a busy year with many developments on the elearning front. I have been waiting in some ways for the software to catch up with what I want to produce quickly and effectively for all of you, free to use of course. Things are starting to move forwards so this I hope is the year to really get some quality content produced and shared. Also I will be reworking and unlocking some content for all to use from my private materials.

I thought I would share our usage stats this year and it looks like the totals this year are…

  • Unique Visits 157,690
  • Number of Visits 253,391
  • Pages Served 928,271
  • Hits 6,094752
  • Data Served 650GB

So there it is, how cool, thanks for coming and please come back. We also have channels on Twitter and you tube with content which are all unlocked so please visit there as well…

https://twitter.com/animatedsci

https://www.youtube.com/user/djrpowell

 

So happy new year to all….

Daniel Powell

Animated Science

Permanent link to this article: http://www.animatedscience.co.uk/2015/2014-animated-science-news

Sep 12 2014

Progress for giant laser instrument

Progress for giant laser instrument http://www.bbc.co.uk/news/science-environment-29168676

Permanent link to this article: http://www.animatedscience.co.uk/2014/progress-for-giant-laser-instrument

Jun 24 2014

Insecticides put world food supplies at risk, say scientists

Insecticides put world food supplies at risk, say scientists

http://gu.com/p/3qc6b

Regulations on pest sprays have failed to prevent poisoning of almost all habitats, international team of scientists concludes Damian Carrington.
The world’s most widely used insecticides have contaminated the environment across the planet so pervasively that global food production is at risk, according to a comprehensive scientific assessment of the chemicals’ impacts. The researchers compare their impact with that reported in Silent Spring, the landmark 1962 book by Rachel Carson that revealed the decimation of birds and insects by the blanket use of DDT and other pesticides and led to the modern environmental movement. Billions of dollars’ worth of the potent and long-lasting neurotoxins are sold every year but regulations have failed to prevent the poisoning of almost all habitats, the international team of scientists concluded in the most detailed study yet. As a result, they say, creatures essential to global food production – from bees to earthworms – are likely to be suffering grave harm and the chemicals must be phased out. The new assessment analysed the risks associated with neonicotinoids, a class of insecticides on which farmers spend $2.6bn (£1.53bn) a year. Neonicotinoids are applied routinely rather than in response to pest attacks but the scientists highlight the “striking” lack of evidence that this leads to increased crop yields.

“The evidence is very clear. We are witnessing a threat to the productivity of our natural and farmed environment equivalent to that posed by organophosphates or DDT,” said Jean-Marc Bonmatin, of the National Centre for Scientific Research (CNRS) in France, one of the 29 international researchers who conducted the four-year assessment. “Far from protecting food production, the use of neonicotinoid insecticides is threatening the very infrastructure which enables it.” He said the chemicals imperilled food supplies by harming bees and other pollinators, which fertilise about three-quarters of the world’s crops, and the organisms that create the healthy soils which the world’s food requires in order to grow. Professor Dave Goulson, at the University of Sussex, another member of the team, said: “It is astonishing we have learned so little. After Silent Spring revealed the unfortunate side-effects of those chemicals, there was a big backlash. But we seem to have gone back to exactly what we were doing in the 1950s. It is just history repeating itself. The pervasive nature of these chemicals mean they are found everywhere now. “If all our soils are toxic, that should really worry us, as soil is crucial to food production.”

The assessment, published on Tuesday, cites the chemicals as a key factor in the decline of bees, alongside the loss of flower-rich habitats meadows and disease. The insecticides harm bees’ ability to navigate and learn, damage their immune systems and cut colony growth. In worms, which provide a critical role in aerating soil, exposure to the chemicals affects their ability to tunnel. Dragonflies, which eat mosquitoes, and other creatures that live in water are also suffering, with some studies showing that ditchwater has become so contaminated it could be used directly as a lice-control pesticide. The report warned that loss of insects may be linked to major declines in the birds that feed on them, though it also notes that eating just a few insecticide-treated seeds would kill birds directly. The report is being published as a special issue of the peer-reviewed journal Environmental Science and Pollution Research and was funded by a charitable foundation run by the ethical bank Triodos.

The EU, opposed by the British government and the National Farmers Union, has already imposed a temporary three-year moratorium on the use of some neonicotinoids on some crops. This month US president Barack Obama ordered an urgent assessment of the impact of neonicotinoids on bees. But the insecticides are used all over the world on crops, as well as flea treatments in cats and dogs and to protect timber from termites. However, the Crop Protection Association, which represents pesticide manufacturers, criticised the report. Nick von Westenholz, chief executive of the CPA, said: “It is a selective review of existing studies which highlighted worst-case scenarios, largely produced under laboratory conditions. As such, the publication does not represent a robust assessment of the safety of systemic pesticides under realistic conditions of use.” Von Westenholz added: “Importantly, they have failed or neglected to look at the broad benefits provided by this technology and the fact that by maximising yields from land already under cultivation, more wild spaces are preserved for biodiversity. The crop protection industry takes its responsibility towards pollinators seriously. We recognise the vital role pollinators play in global food production.”

A Bulgarian beekeeper grabs dead bees during a demonstration in Sofia to call for a moratorium on the use of neonicotinoid pesticides in April. The new report, called the Worldwide Integrated Assessment on Systemic Pesticides, analysed every peer-reviewed scientific paper on neonicotinoids and another insecticide called fipronil since they were first used in the mid-1990s. These chemicals are different from other pesticides because, instead of being sprayed over crops, they are usually used to treat seeds. This means they are taken up by every part of the growing plant, including roots, leaves, pollen and nectar, providing multiple ways for other creatures to be exposed. The scientists found that the use of the insecticides shows a “rapid increase” over the past decade and that the slow breakdown of the compounds and their ability to be washed off fields in water has led to “large-scale contamination”. The team states that current rules on use have failed to prevent dangerous levels building up in the environment. Almost as concerning as what is known about neonicotinoids is what is not known, the researchers said. Most countries have no public data on the quantities or locations of the systemic pesticides being applied. The testing demanded by regulators to date has not determined the long-term effect of sub-lethal doses, nor has it assessed the impact of the combined impact of the cocktail of many pesticides encountered in most fields. The toxicity of neonicotinoids has only been established for very few of the species known to be exposed. For example, just four of the 25,000 known species of bee have been assessed. There is virtually no data on effects on reptiles.

Permanent link to this article: http://www.animatedscience.co.uk/2014/insecticides-put-world-food-supplies-at-risk-say-scientists

Jun 21 2014

Mountain blasted to build telescope

Mountain blasted to build telescope http://www.bbc.co.uk/news/science-environment-27902611

Permanent link to this article: http://www.animatedscience.co.uk/2014/mountain-blasted-to-build-telescope

Jun 21 2014

Smoking during pregnancy at new low

Smoking during pregnancy at new low http://www.bbc.co.uk/news/health-27919578

Permanent link to this article: http://www.animatedscience.co.uk/2014/smoking-during-pregnancy-at-new-low

Jun 14 2014

The metal that can store power for a small town

The metal that can store power for a small town http://www.bbc.co.uk/news/magazine-27829874

The metal that can store power for a small town

Pile of Vanadium oxide
Hawaii has a problem, one that the whole world is likely to face in the next 10 years. And the solution could be a metal that you’ve probably never heard of – vanadium.

Hawaii’s problem is too much sunshine – or rather, too much solar power feeding into its electricity grid.

Generating electricity in the remote US state has always been painful. With no fossil fuel deposits of its own, it has to get oil and coal shipped half-way across the Pacific.

That makes electricity in Hawaii very, very expensive – more than three times the US average – and it is the reason why 10% and counting of the islands’ residents have decided to stick solar panels on their roof.

The problem is that all this new sun-powered electricity is coming at the wrong place and at the wrong time of day.

Hawaii’s electricity monopoly, Heco, fears parts of the grid could become dangerously swamped by a glut of mid-day power, and so last year it began refusing to hook up the newly-purchased panels of residents in some areas.

And it isn’t just Hawaii.

“California’s got a major problem,” says Bill Radvak, the Canadian head of American Vanadium, America’s only vanadium mining company.

“The amount of solar that’s coming on-stream is just truly remarkable, but it all hits the system between noon and 4pm.”

That does not marry well with peak demand for electricity, which generally comes in the late afternoon and evening, when everyone travels home, turns on the lights, heating or air conditioning, boils the kettle, bungs dinner in the microwave, and so on.

What the Golden State needs is some way of storing the energy for a few hours every afternoon until it is needed.

And Radvak thinks he holds the solution – an electrochemical solution that exploits the special properties of vanadium.

Vanadium mine, Nevada
Back in 2006, when Radvak’s company decided to reopen an old vanadium mine in Nevada, electricity grids were the last thing on their minds.

Back then, vanadium was all about steel. That’s because adding in as little as 0.15% vanadium creates an exceptionally strong steel alloy.

“Steel mills love it,” says Radvak. “They take a bar of vanadium, throw it in the mix. At the end of the day they can keep the same strength of the metal, but use 30% less.”

It also makes steel tools more resilient. If the name vanadium is vaguely familiar to you, it is probably because you have seen it embossed on the side of a spanner.

And because vanadium steel retains its hardness at high temperatures, it is used in drill bits, circular saws, engine turbines and other moving parts that generate a lot of heat.

So steel accounts for perhaps 90% of demand for the metal.

Ford production in the early 1900s
Vanadium’s alloying properties have been known about for well over a century. Henry Ford used it in 1908 to make the body of his Model T stronger and lighter.

For the same reasons – and also for its heat resistance – it was used to make portable artillery pieces and body armour in the First World War.

But vanadium’s history seemingly goes back even further. Indeed, mankind may have been unwittingly exploiting the metal as far back as the 3rd Century BC.

Knife
That is when “Damascus steel” first began to be manufactured.

Swords made of the steel were said to be so sharp that a hair would split if it were dropped on to the blade.

Damascus steel scimitars were credited with enabling Muslim warriors to fight off the Crusades.

Circa 1250, A crusader and Muslim warrior in hand-to-hand combat.
Samples taken from a handful of antiques were found to contain tiny amounts of impurities, including – crucially – vanadium.

Bizarrely, this two-millennium-old steel-making tradition vanished in the mid-18th Century. The vanadium-rich iron deposits in southern India from which the steel was fashioned must finally have become exhausted, or so the theory goes.

Today, vanadium mainly goes into structural steel, such as in bridges and the “rebar” used to reinforce concrete.

It is a small and sometimes volatile market. Supply is dominated by China, Russia and South Africa, where the metal is extracted mostly as a useful by-product from iron ore slag and other mining processes.

China – which is midway through the longest and biggest construction boom in history – also dominates demand.

A recent decision by Beijing to stop using low-quality steel rebar has bumped up forecast demand for vanadium by 40%.

Yet the biggest source of future demand may have nothing to do with steel at all, and may instead exploit vanadium’s unusual electro-chemical nature.

Freyja, Freya or Vanadis – Norse goddess of fertility, love and marriage, beauty and light and peace
“Vanadium was actually discovered twice, and one of the discoverers was the Swedish chemist Nils Sefstrom, who named it after the Norse goddess of beauty, Vanadis,” says the Italian chemist, Prof Andrea Sella of University College London.

To explain why, Sella produces a flask of an easily misidentified yellow-coloured liquid.

It is, he says, a solution of “oxidised” vanadium in sulphuric acid – that is, vanadium that has been stripped of all five of its outermost electrons (it inhabits column five of the periodic table).

He then adds a shiny lump of a zinc-mercury amalgam and begins to shake the concoction violently.

“The zinc is going to allow us to put electrons back onto the vanadium – the chemical process we call ‘reduction’,” he explains.

The solution quickly turns green, and then gradually becomes blue. “And if we keep shaking for another few minutes, we will eventually end up with a violet colour.”

Each change of colour represents one further electron being passed on to the vanadium.

“The ease with which you can hand electrons to the vanadium and take them away – this is the basis of a very, very stable battery.”

Vanadium “redox flow” batteries are indeed stable. They can be discharged and recharged 20,000 times without much loss of performance, and are thought to last decades (they have not been around long enough for this to have been demonstrated in practice).

They can also be enormous, and – in large part thanks to their vanadium content – expensive. The smallest of the “Cellcube” batteries that American Vanadium is producing in partnership with German engineering firm Gildemeister has a footprint the size of a parking bay and costs $100,000.

line
How does a Vanadium Redox Flow Battery work?

Vanadium – yellow, blue, green and violet
Consists of two giant tanks of different solutions of vanadium dissolved in sulphuric acid, separated by a membrane

• The battery produces an electrical current as the fluids are pumped past electrodes on either side of the battery

• In one tank, the vanadium releases electrons, turning from yellow to blue

• In the other tank, the vanadium receives electrons, turning from green to violet

• The electrons pass around a circuit, generating a current, while at the same time a matching number of protons (hydrogen ions) pass across the membrane between the two solutions

line
The BBC’s headquarters in London – home to 7,000 employees – would need one the size of two 12-metre trailers, Radvak says, perched up on the roof or perhaps buried underground.

His firm is providing the batteries’ key ingredient, the electrolyte (the fluid in the battery).

It is the same chemical solution as in Sella’s demonstration, and – conveniently enough – is also the end-product of the standard process of using sulphuric acid to leach the vanadium out of its ore.

Radvak says that among his target customers are large corporate electricity consumers such as the Metropolitan Transport Authority, which runs New York’s subway, and with whom his firm has just signed a pilot deal to supply Cellcube batteries.

Modular cellcube
Such companies are facing ever higher charges for the electricity they use during the peak hours of the day, and the Canadian claims they can cut their bills by a quarter if they use a battery to draw down the daytime electricity they need during the night, when it is cheapest.

By flattening out demand between the daily peaks and troughs, the batteries also help out the electricity companies.

One of their biggest expenses is investing in the extra power station capacity that is only ever called upon for a few hours each year when the weather, holidays and the time of day all conspire to produce the biggest peak in electricity demand.

That challenge of balancing electricity supply and demand is set to get a whole lot more difficult as ever more solar and wind energy is added to the grid.

Solar panel emergency call box in Hawaii
Which brings us back to Hawaii.

Rooftop solar panels don’t just produce electricity at the “wrong” time of day, they also produce it at a low voltage, which, according to the German renewable energy entrepreneur Alexander Voigt, means it is effectively trapped at the level of the local community.

“Our traditional electricity grid is built in a way that the energy flows from the high voltage to the low voltage, and not the other way round,” he says.

That means the solar energy can only be shared among the few households – typically just a village or a town neighbourhood – that happen to share the same transformer station that plugs them into the high-voltage national grid.

Voigt helped set up the vanadium battery company that was later bought up by Gildemeister. He foresees the batteries being built next to transformers, where they can store up each community’s daily solar surplus, before releasing it back again in the evening.

It is a rosy image, but it does prompt two obvious questions.

First, why should vanadium batteries be the technology of choice?

For example, there is a glut of cheap lithium batteries these days, after manufacturers built out their capacity heavily in anticipation of a hybrid and electric cars boom that has yet to arrive.

Lithium batteries can deliver a lot of power very quickly, which is great if you need to balance sudden unexpected fluctuations – as may be caused by passing clouds for solar, or a passing gale for wind.

But a lithium battery cannot be recharged even a tenth as many times as a vanadium battery – it’s likely to die after 1,000 or 2,000 recharges.

Nor can lithium batteries scale up to the size needed to store an entire community’s energy for several hours. By contrast, vanadium batteries can be made to store more energy simply by adding bigger tanks of electrolyte. They can then release it at a sedate pace, unlike conventional batteries, where greater storage generally means greater power.

At the other end of the scale, there are also plenty of large-scale energy storage systems under development, such as those exploiting liquefied air, and the 1,000-fold shrinkage in the volume of the air when it is cooled to -200C.

But these systems take up a lot of space, Mr Voigt says, and are better suited to the very largest-scale facilities that will be needed to serve for instance a large offshore wind farm plugging into the high-voltage national grid.

The second really big question for vanadium is whether the world contains enough of the stuff.

The immediate challenge is that the birth of the vanadium battery business is coming just as China is ramping up its demand for vanadium steel.

But there is also a longer-term problem – the quantities of vanadium added to steel alloys are so tiny that it is not economic to recover it from the steel at the end of its life. So for the battery market, that vanadium is effectively lost forever.

But Mr Voigt remains optimistic.

“Like with all raw materials, it’s always a question of how stable is the need of the market, and how big are the incentives for the industry to set up new mines.”

With demand on an upward trend, American Vanadium is not the only one trying to fill the gap. For example, rival battery-maker Imergy has developed a cheap ways of producing vanadium electrolyte from iron ore slag and the fine ash produced by coal-burning.

Over the longer term, demand for vanadium steel could be met by melting down and recasting old vanadium steel rather than making it afresh, so that freshly mined vanadium could be channelled into the energy market instead.

And in the very long run, perhaps we will harvest vanadium from sea squirts – there are plenty of them in the Pacific.

line
Sea squirts

Sea squirts
• Vanadium is an essential micronutrient for animals, but toxic in large dosages

• Some sea squirts accumulate vanadium in their bodies, turning their blood green, possibly in order to protect them from predators

• Closely related to vertebrates, in their larval stage sea squirts look like tadpoles and swim around

• But once they find an appropriate rock to attach to, they metamorphose into something resembling a brightly-coloured vegetable

• They never leave their spot, and feed by filtering tasty morsels from the sea water they pump through their bodies

• Having committed themselves to this life of tedium, they also digest their redundant brains

• Some fungi also accumulate vanadium, including the bright red and white poisonous, hallucinogenic mushroom known as the fly agaric

line
Subscribe to the BBC News Magazine’s email newsletter to get articles sent to your inbox.

BBC © 2014

Permanent link to this article: http://www.animatedscience.co.uk/2014/the-metal-that-can-store-power-for-a-small-town

Older posts «